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PROBLEM OF ESTIMATING THE CREEP STRENGTH UNDER STEP LOADING 

A. M. Lokoshchenko and S. A. Shesterikov UDC 539.4:539.376 

In many investigations of the work of structures under variable stress under prolonged 
high-temperature action conditions, the main question is the possibility of estimating the 
rupture time from test results under constant stresses. The rule of linear summation of the 
partial times, proposed in [i] to analyze test results under variable temperature, is ordi- 
narily utilized as the simplest and best known hypothesis~ We consider the case when the 
stress o1 in the specimen and the effective temperature tx changes by a jump to 02 and re- 
mains constant for a time ta until rupture at the time t* = t, + ta. We write the sum of the 
partial times in the form 

A = t f f t ;  + t f f t~ .  (1) 

In case the principle of linear summation is satisfied 

A----I. (2) 

Here t** (or t=*) is understood to be the time to fracture for stresses ox (or 02) invariant 
during the testing. Many investigations confirm the rule (2) to some extent, however, sys- 
tematic deviations are observed in a significant quantity of papers, which are outside the 
boundaries of the natural spread. For certain materials a deviation of A from I to one side 
is hence characteristic, independently of the test parameters, while for other materials the 
quantity A is greater or less than i depending on the sign of the difference (o1 -- 02). 

The behavior of steel E1388 at 600~ was investigated in [2] for o1 > 02 and o1 < oa 
for small changes in the stress (Io -- o2"I/o, < 0.06), and the tests exhibited a significant 
one-sided deviation from the law (2): the mean value of A was Ao = 0.72. A model permitting 
the description of the deviation of A from 1 to one side, independently of the sign of the 
difference (o, -- oa), is proposed below. 

The concept of a mechanical equation of state, proposed in [3], is used with a system of 
kinetic equations within the framework of the mechanics of continuous media to describe the 
creep of metals, to determine the parameters characterizing the state under consideration. 
One structural parameter m(t) which is a certain measure of the "spalling" of the material, 
is utilized most frequently to describe the creep strength. A value of m from the range 
0~-~ ~ I ,  is ascribed to each "spalling" state, where ~ = 0 corresponds provisionally to the 
undamaged material, and m = 1 corresponds to the time of rupture t*. 

It is kno~ that the nature of rupture for a number of materials at the identical tem- 
perature can be qualitatively distinct depending on the stress level. At high stresses the 
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development of irreversible shear creep strains is observed until rupture, which passes main- 
ly over the body of the grain. At low stresses pore formation occurs along the grain bound- 
aries, union of the pores grows into cracks which set the material into intragranular rupture. 
It is evident that under conditions when disturbance of the structure of two kinds exists, it 
is natural to introduce two structure parameters ~(t) and ~(t). 

Let us consider the following kinetic equations characterizing the change in the struc- 
ture parameters ~ and ~ in the time t: 

= B(o loo)  ~ f l ' ( ~ ) ,  e = B ( ~ I o o ) ~ l F ' ( ~ ) ,  k = (m - -  n) > 0, (3)  

where the parameters ~ and ~ vary between 0 at the initial instant and i, f(~) and F(~) are 
differentiable functions of their arguments that grow continuously from the values f(0) = 
F(0) = 0 to f (i) = F(1) = i. The time of rupture is determined by a certain relationship be- 
tween the parameters ~ and ~. As the simplest rupture condition we take 

max (~, ~) = I. (4) 

Relationships (3) and (4) show that the structure parameters m(t) and ~(t) vary independently 
in time. Rupture sets in at the time t* when one of the parameters becomes equal to I. 

We first consider the creep strength under constant stress (o(t) = const). Integrating 
(3) with respect to the time between 0 and t* and with respect to each of the parameters 
and ~ between 0 and I, and utilizing condition (4), we determine the rupture time 

/B -~ (%/0)'* for o < Oo, (5) 
t* = (B-~ (~o'o)'* for  o > o0. 

which corresponds to a known approximation of experimental creep strength curves in double 
logarithm coordinates log o -- log t* in the form of two rectilinear sections (Fig. i). The 
stress oo corresponds to the intersection of these sections~ 

Let a constant stress o, act for a time t,, after which it changes by a jump to the val- 
ue o2, and then remains invariant for a time t2 up to rupture. 

We first consider the case when each of the stresses o, and ~2 are greater than ao. An 
analysis of (3) shows that in this case the parameter ~ becomes i more rapidly than m, inde- 
pendently of the value of t,, as well as of whether a, or~2 is greater. Hence, in this case 
just the second of the two equations in (3) is essential. It can be shown that condition (2) 
is always satisfied for min (a,, o2) > oo. An analogous deduction also follows in the case 
that each of the stresses oI and oz is less than Ooo 

Now we consider a step loading when the passage through o = oo is performed for t = t,. 
To do this we rewrite (3) in a form more convenient for investigation 

d /  = B ( o / % )  ~ dt ,  d F  = B(G/%) '"d t .  (6) 

We first investigate the case of partial unloading (o, > oo > o2). We introduce the dimen- 
sionless variables x = oz/oo, Y = o2/oo and we integrate (6). We consequently determine the 
time tm* during which the parameter ~ and its corresponding functions f(m) reach the value 
t~* as well as the time ~ during which the parameter ~ and the function F(~)equal i: 

B [ x " t  1 -+- y n ( t ~  - -  tl) ] = 1, t~ ---- t 1 -~- g - "  (B  - t  - -  x~*t,), 

B [ x ~ t l  + y'~ ( t~ - -  tl) ] = t ,  t~ = t x + y - m  ( B - 1  __ x " q ) .  
(7) 

The true rupture time t* is defined as the minimum of the two values tm* and t~*. There fol- 
lows from a comparison of tm* and t~* 

/ " t* for t l / t l  < c l .  
t * =  (8) 

[tn for: tl/t~" > cl, 

and the value of c, is determined from the equation c, = (I -- yk)/(l -- ykx-k). From (5) we 
obtain that the rupture time t** = (Bxm) -* corresponds to the stress x acting constantly, and 
the rupture time t2* = (Byn) -* to the stress y. Using (7) and (8), we calculate the sum of 
the partial times (i) 
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['1 + ( t l / t ~ ) ( t - -  x -~) for t j t [  < c  1, (9 )  
A =  

h / *  
+ ( '1 - -  t u t~) ( y - ' : - - ' l )  f o r  t,./t~ > c,. 

It is seen from (9) that the quantity A always exceeds i independently of tl/tx*o The de- 
pendence of A on tl/tz* is a continuous piecewise-linear function that maps a two-piece line. 
The maximum of A is achieved for tl/tz* = cz, hence 

~ , ~  = i § (1 - x - ~ ) ( l  - y ~ ) / ( l  - y , , ~ - ~ )  ( 1 0 )  

The v a l u e  o f  Ama x f o r  a h a l f - s t r i p  on  t h e  ( x ,  y )  p l a n e  c a n  b e  f o u n d  f r o m  ( 1 0 ) :  x > 1 ,  0 < y 
< 1 .  On b o t h  b o u n d a r i e s  ( x  = 1 a n d  y = 1) o f  t h i s  h a l f - s t r i p  Ama x = 1 .  A l o n g  t h e  r a y  ( x  > 0 ,  
y = 0)  Ama x i n c r e a s e s  a s  x g r o w s  a s y m p t o t i c a l l y  f r o m  1 t o  2 .  An a n a l y s i s  o f  ( 10 )  shows  t h a t  
t h e  m o d e l  (3 )  u n d e r  c o n s i d e r a t i o n  p r e d i c t s  a u n i l a t e r a l  d e v i a t i o n  f r o m  t h e  l i n e a r  s u m m a t i o n  
p r i n c i p l e  when gx > co  > g2 

i < A < 2. (11) 

Investigation of the creep strength for g1 < go < o2 is performed in the same manner. 
In this case the rupture time t* is determined from the formula 

t* [ tg = t '  + y - "  (B - l  - x " tO f~ t ' / t ;  < c2' 

(t~ = t~ + y-" (B-~ - -  x~t~) for: tJt~ > c2, 

where c= = (i -- y-k)/(l -- xky-k). The sum of the partial times is calculated, as usual, from 

( i )  : 

A =  l l t ~ _ ( i _ x h ) ( t J t [ )  for,. t~/t*~ <c2,. 
--I- (yk _ i )  (1 - -  t i t 1 )  for tz/t 1 > c 2. 

It can be seen that for x < i < y the sum of partial times always exceeds one, as in the pre- 
vious case. In this case the inequality (ii) is also satisfied. The maximal value of the 

sum A equals 
Amax = I ~- ( |  - -  xh)(t - -  y -k ) / ( t  __zhy-h) .  

Let us examine the first quadrant in the (x, y) plane and let us isolate domains with 
different values of A. In the quadrant (0 ~ x ~ I, 0 ~ y ~ I), as well as within the right 
angle (x ~ I, y ~ I) p A always equals i for any combinations of x and y. In the remaining 
half-strips (x > i, 0 < y < i and 0 < x < i, y > i) A is between i and 2. Curves 1-3 corre- 
sponding to the constant levels Ama x (1.25, 1.5, 1.75) in Fig. 2 are presented within the 
half-strip (x > I, 0 < y < i) for the case k = 2. The analysis performed shows that the model 
(3) and (4) can describe a unilateral deviation from the principle of linear summation 

(i < A < 2) only in cases when cI <Oo < o2 or oi > Co > o2. 

Let us turn to the case of multistep loading. If the loading is characterized by multi- 
ple alternation of the stresses gz and o2, without passage through oo, then one of the two 
structure parameters being investigated is dominant; material rupture is determined by the be- 
havior of just this structure parameter and the linear summation principle for the partial 
times is not satisfied identically. 

Let us consider alternation of the stresses with passage throuth go. We start from the 
unilateral loading presented above, which we divide into two stages with respect to time. Let 

the stress az > oi act during0.5tl, then the stress o=<oo is applied during0.5t2. Afterwardsaddi- 

291 



tional loading (02 < Oo during 0.5ti) occurs and then repeated unloading (the stress o2<Oo is applied 
during T until rupture). Integrating (6) for such loading, we obtain that the time T of the stress 
o= acting inthe second cycle is 0.5t2. If a loading with many passages through oo is considered, then 
it can be shown by an analogous method that rupture sets in because of the combined action 
of the stress ~, during the time t, and the stress o2 during t=, where t, is the total time 
of application of the stress ~i in all the stages, and t= is the total time during which the 
stress ~2 was applied. It hence follows that the sum of the partial times is independent of 
the quantity of passages of the stress through ~o, and agrees with the value (9). Therefore, 
model (3) and (4) forthe description of loading with single and multiple passages through 
the stress ~o results in a unilateral deviation (i < A < 2) from the linear summation prin- 
ciple for the partial times. 

Let us note that if the rupture condition (4) is replaced by 

min (~, ~ ) = t ,  

then the deviation from condition (2) towards A < i can be described by using the model 
and (12). 

(12) 

(3) 

LITERATURE CITED 

I. Eo Lo Robinson, "Effect of temperature variation on the creep strength of steels," Trans. 
Amo Soc. Mech. Eng., 60, 253 (1938). 

2. I.A. Oding and V. V. Burdukskii, "Influence of a variable force mode on the creep 
strength of steel," in: Investigations on Heat-Resistant Alloys [in Russian], Izd. Akad. 
Nauk SSSR (1960). 

3. Yu. No Rabotnov, Creep Problems in Structural Members, Elsevier (1969). 

PROBLEM OF NORMAL PRESSURE WAVES RUNNING AGAINST A STAMP 

V. A. Babeshko, Zh. F. Zinchenko, and A. V. Smirnova UDC 539.3 

The problem of the motion of a rigid massive circular stamp with a flat base under the 
action of oncoming normal pressure waves is examined~ The stamp is assumed to be in fric- 
tionless contact with an elastic medium. It is assumed that the pressure wave is a plane 
wave and arrives from infinity. By removing the normal pressures from the surface of the me- 
dium by solving the boundary-value problem in the absence of the stamp (unmixed problem), the 
starting boundary-value problem reduces to the following mixed problem: a wave, which inter- 
acts with the stamp, travels along the surface of the medium screened from the normal pres- 
sure. Adding to the solution of this mixed problem the solution corresponding to the unmixed 
problem, we obtain the solution of the starting problem. Taking into account the fact that 
it is easy to solve the unmixed problem with the help of Fourier and Laplace integrals, in 
this work, we are primarily concerned with the mixed problem noted above with a screened sur- 
face outside the stamp. 

i. We are studying the problem of the interaction of a rigid stamp with mass m, occupy- 
ing a circular region ~ with radius a in a plane, with an elastic layered medium. It is as- 
sumed that the contact is frictionless, while a uniformly moving normal pressure pulse p(x, 
y, t) acts on the stamp. It is necessary to find the normal component of the contact stress- 
es q(x, y, t), the vertical displacement of the center of the stamp ~(t), as well as the an- 
gles of its rotation relative to the horizontal axes m(t) and 8(t); we shall determine q(x, 
y, t) by solving the dynamic Lamb equation 

(~ ~ 2~)grad div U - - ~  rotrot U--pO2U/aP - -0  

with mixed boundary conditions and initial conditions. In particular, in the case of non- 
stationary action of the stamp on an elastic homogeneous half-space (z d0), the boundary con- 
ditions have the form 

-r~(x ,  y,  O, t) = %j.(x, y, O, t) = O, - - o o  < x,  y < + o o ,  
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